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/ PREFACE

Nutritional Sustainment Modules (NSMs) being developed for the

battlefield conditions of the future (Army 21) require unprecedented energy

density and extraordinary nutrient stability for prolonged periods (possibly

up to one year) without refrigeration.

A recent observation'at the U. S. Army Natick RD&E Center (project No.

IL161102AH5203020) demnstrated that a compressed food model had increased

oxidative stability of the fat component compared with its corresponding

uncompressed food model. The nutritional quality of the protein component of

foods is readily compromised under certain situations, e.g., intermediate

wter activity and the presence of reducing carbohydrates. It was therefore

of interest to determine whether compression would also retard the loss in

protein quality of food models as compared with uncompressed food models.

The present study (Project No. IL1611102AH5203018)-was undertaken to

ccnpare the loss in the essential amino acid, lysine, in compressed and

unccpressed acetyllysine-glucose-cellulose models. Additional information

was sought regarding the use of other indicators, such as reducing capacity,

furosine, fluorescence, and color, as a means of rapidly assessing losses in

lysine. This study was undertaken during January 1985 to January 1987. A

portion of this paper was presented at the Institute of Food Technologists

Convention, June 15-18, 1986, Dallas, Texas.
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INTIDUCTION

Among the many degradative interactions that take place in foods, the

most difficult to arrest are those between proteins and reducing

carbohydrates. This situation is even more aggravated when foods, such as

combat rations of the future, are required to be stored for extended

periods of time without refrigeration. Even when reducing carbohydrates

are not part of product formulations, hydrolysis of the polysaccharides

and oligosaccharides may occur during processing or during prolonged

storage in the slightly acidic environment of most foods. Before

solutions can be suggested to retard protein degradation, it is necessary

to have a simple working model to assess the reactivity of lysine with

reducing sugars under various optimum and adverse conditions.

It is well recognized that an amine, amino acid or a protein

containing free amino groups can react (Fig. 1) with reducing sugars,

through the Maillard reaction.I The Schiff base initially formed,

cyclizes to the corresponding N-substituted glycosylamine and undergoes an

irreversible Amadori rearrangementI to form a ketose sugar derivative

(N-substituted 1-amino-l-deoxy, 2-ketose), commonly referred to as the

Amadori compound. The Amadori compound is the end product of the initial

stage of the Maillard reaction. The subsequent stages of the reaction

give rise to a variety of fission products, carbonyl compounds,

heter(oycl: flavor comox-unds as well as broun melanoidin pigments.

The Amadori compound as wl1 as the carbonyl compounds formed have

specific reducing prop.rt ies, which make it possible to fol 1ow the course

of the reaction. Acid hydrolysis (Fig. 2) of the Anidori c(ipound qiws

rise to a unique protein quality indicator cCxx)und, furosine. 2

' A., k
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A large lag in lipid autooxidation in compressed, compared with

uncompressed, food mrodel systems, indicative of a beneficial effect of

compression was recently observed by Natick researchers (W. L. Porter and

E.D. Black).3 Whether compression has a similar, beneficial effect upon

Maillard degradative losses in the nutritional availability of lysine has

not before been investigated. The specific objectives of this

investigation were 1) to determine the quantitative asp*ects of lysine

availability in a low-moisture model containing acetyllysine, glucose and

cellulose; and 2) to compare the kinetics of the acetyllysine-glucose

interaction in compressed and uncompressed models.

MATERIALS AND METHODS

Preparation of low moisture acetyllysine-glucose models. Separate

N-a-acetyllysine (Sigma Chemical (O.) and glucose (Fisher Certified

Jeagent) solutions in highly purified deionized Milli Q water (Millipore

Corp.) were prepared and the necessary volumes (usually 10 mL) to provide

5.4 mmoles (I g) of acetyllysine and 12.2 mmoles (2.2 g) of glucose were

pipetted into several freeze-drying flasks. Dispersions in Milli Q water

containing 14.2 g of cellulose (Sigma 2t3, microcrystalline cellulose, 98%

purity, <39 w particle size, Sigma Chemical Co.) were then added to each

flask, mixed well and immediately shell frozen in a alcohol-dry ice bath.

The flasks were freeze-dried in a manifold-type freeze-dryer. The dried

powders were mixed well in a blender and a portion was compressed into 2 g

disks (4 mm thick, 25 mm diameter) using an Instron at 5500 psi. The

freeze-dried powders (2 g samples) and the 2 g disks were incubated in

[,earate_ qlass jar incubators over saturated potassium acetate solution

(A ;1 ].2j) at 60(C in a mechanical convection oven. At p.ricxlic

4

%, %



intervals, samples were withdrawn, cooled, and extracted in 0.05 M

phosphate buffer pH 5.5 and analyzed for color, fluorescence

characteristics, reducing capacity, furosine, glucose and

N-c-acetyllysine.

Assay Procedures

Glucose was assayed by an enzymatic procedure by determining the

reduction of NAD to NADH during phosphorylation of glucose to

glucose-6-phosphate and its subsequent dehydrogenation to

6-phosphogluconate. Furosine was determined, following 6N HCL acid

hydrolysis, at 280 nm with a Waters iiBondapak C18 column and elution with

an acetate buffer, p1 4.3.4 Values are expressed as peak area units as

obtained on a Waters Data Module 730 (Millipore Co, Milford, MA). Color

was measured at 410 nm in a Bausch and Lomb spectrophotometer. Reducing

power was measured by the reduction of ferricyanide in acidic pH.
5

Values are expressed as milliequivalents of reducing ccpounds based upon

an ascorbic acid standard. Fluorescence intensity at the optimum

excitation-emission wavelength (350 and 430 nm, respectively) was recorded

with a Perkin Elmer-H1itachi Fluorescence spectrophotometer. Values are

expressed as arbitrary units normalized to a quinine sulfate standard.

For the determination of acetyllysine, a modification of the recent

picotag (Fig. 3) method described by Bidlingmeyer, Cohen and Tarvin 6 was

utilized to separate the Amdori compound (bound acetyllysine) from the

parent unreacted acetyllysine. A Waters (Waters Associates, Millipore

Co., Milford, MA) High Performance Liquid ChromatoqIraphy (HPLC) system,

consisting of model 510 pumps, Waters Intelligent Sample Processor (model

710B), 721 System Controller, Kratos Absorbance Detector (Spectraflow 773)

and a Waters Printer/Plotter/ Integrator (Data Module 730) were used. The

I' ' ' . ° '' ''' " " ""- " - " , 4 -'' - . "" - """"- " ° . ". .



data for color, reducing capacity, furosine peak areas and fluorescence

have been normalized to I mg NAL/mL at zero time for comparative purposes.

&0 NC= N2- H C

S 0
o-N-C - H CHR -C - 1

II II

FIGURE 3.: PREPARATION OF PHENYLISOTHIOCARBAMYL (PITC)
DERIVATIVES USING PHENYLISOTHIOCYANATE.

PEPTIDE (OR AMINO ACID) AN ETHYL ALr.OHOL-

TRIETHYLAMINE-WATER (PH 9-10).

RESULTS AND DISCUSSION

Reactivity of N-a-Acetyllysine-Glucose-Cellulose (NAL-GL-CE) Models.

The degradation of N-c-acetyllysine (NAL) due to Maillard reaction with

glucose (GL) in the acetyllysine-glucose-cellulose (NAL-GL-CE) system at

60°C and a = 0.23 was followed by monitoring: a) the production of

furosine after acid hydrolysis; b) the increase in reducing capacity; c)

the formation of fluorescent conpounds; d) the increase in brown

chromophoric components; e) the loss in NAL; and f) the decrease in GL.

The degradation of NAL and GL suggested an exponential decay, possibly

first order kinetics (Figs. 4 and 5). Rate curves exhibiting exponential

increases were observed for reducing power and furosine (Figs. 6 and 7).

The fluorophoric and chromphoric compounds appeared to increase linearly

(Figs. 8 and 9), at least until the end of the present experimental

period.

6
k€,
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FIGURE 6. THE EFFECT OF INCUBATION ON THE FORMATION OF REDUCING COMPOUNDS

(10-4 MILLIEQUIVALENTS/MG NAL) IN COMPRESSED AND UNCOMPRESSED

ACFTYLLYSINE-GLUCOSE-CELLULOSE MODELS.
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i FIGURE 7. THE FORMATION OF AMADORI COMPOUND, AS ASSESSED INDIRECTLY
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AC[TYLLYSINE-GLUCOSE-CELLULOSE MODEL S.
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FIGURE 8. THE FORMATION OF FLUORESCENT COMPOUNDS (AS STANDARDIZED

ARBITRARY UNITS/MG NAL) IN COMPRESSED AND UNCOMPRESSED

ACETYLLYSIME-GLUCOSECELLULOSE MODELS.
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Nutritional availability of acetyll¥sine due to Maillard reaetion. 

~~e data indicated a decrease in ~L of 39% in 4 h at 60°C and a water 

.:1ctivity of 0.23. Under a more renlistic condition of storage nt 40°C, 

previous data obtained with a lysine-glucose-cellulose model ind icatoo 

that 25% of the lysine was lost in 144 hours at aw = 0.23. 7 The 

losses at aw = 0.23 in lysine at the end of 4 hours at 60°C and 40°C 

were 70% and 8%, respectively. At 144 hours, the loss in NAL at 60°C 

and aw=-=0. 23 was 96%. The moisture content of the NAI.-GL-CE system was 

2. 0% as determined by prolonged dessication over phosphorous pentoxide. 

While the compromise of essential amino acids, particularly lysine, due to 

Maillard reaction is well known in intermediate moisture foods, it is not 

widely recognized that signifi~ant losses in lysine can occur at low water 

activity conditions. Although the degradation of Nl\L due to reaction with 

GL at 40°C and a = 0.23 in 144 hours is not yet established, it is w 

likely to be significant on the basis of comparative data for lysine. 

Reproducibility of the NAL-GL reaction in compressed systems. Tb 

assess the reproducibility of the experiment and procedures employed, the 

loss of NAL and GL were determined in two totally separate experiments, 

conducted three months .:~part using compressed NAL-GL-cE models. It is 

cJear from both the glucose and lysine degradation curves (Figs. 10 and 

11) that the reaction is surprisingly reproducible under these unusual 

conditions ~here the interaction is taking place in the solid state at 

very low water activity. Furthermore, the substantial loss of NAL of 83% 

in 24 hours at 60°C is confirmed. 

Effect of compression. This study was undertaken to determine the 

effect of compression because of an observation by Natick researchers (W, 

L. Porter and E. o. Black) 3 of a greatly increased lag period (100 h) in 

10 
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lipid oxidation at 65°C with a compressed model compared with its 

corresrxmding uncanprcssed model (Fig. 12). 'Itle data (Figs. 4, 5, 6, 8, 

9) obtained with canpressed and uncompressed NAL-GL-cB models using 

several different parameters have clearly demonstrated that the rate 

curves of the acetyl:ysine-glucose reaction were essentially the same in 

compressed disks as in uncompressed powders. The absence of significant 

differences between the tw:::> m:xlels (compressed and uncompressed) ....ould 

also appear to suggest that there is no major problem with respect to 

0~uilibration of the highly compressed system with the water activity of 

saturated potassium acetate in the jar. The kinetic data on NAL loss in 

compressed and uncompressed systems fitted exponential regression lines 

with slopes and intercepts matching within 4% and 1%, respectively. 

Therefore, these data together with the rate curves indicated that 

compression to 5500 psi has neither a beneficial nor a deleterious effect 

upon the stability of N\L in the presence of glocose. It may be 

tentatively inferred that compression per se may have no deleterious 

effect ur:on the lysine quality of compressed foods, such as dairy bars, 

~nich are important constituents of NSMs. 

Correlotions bet'f.oeen acetyllysine loss and the alterations in other 

~rarreters. 'Ihe concentration of reducing intermediates correlated almost 

perfectly {r = G.999) with the loss in ~L (Fig. 13). Furosine peak areas 

also correlated extremely well (r = 0.993) with the loss in ~L (Fig. 

14) • 'l1lere is a poor correlation between flooreg:ence intensity and the 

loss in NAJJ (Fig. 15). The emission intensity is very weak until almost 

85% of the N.Z\L is consumed. Hence, flooreg:ence is not recommended as a 

reliable indicator for predicting lysine losses. 

12 
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The correlation between color and the loss in NAL (Fig. 16) is even

worse than that for fluorescence. There is very little change in

absorbance until about 90% of the WL is lost. Hence, color, which is

commonly used as a quick assessment of the loss in protein quality by many

food technologists, is an extremely poor indicator. If other interfering

compounds are absent, color and fluorescence may provide an approximate

estimate of lysine quality where the damage is below 60% Even here, it

should be recognized that large inaccuracies can result because of

extremely snall slopes (Fig. 15 & 16)

* Kinetics of the NAL-GL reaction in the solid state. Since the shape

of the rate curve seemed to suggest first order kinetics, semilog plots of

NAL and GL vs. time were obtained. it is evident that a straight-line

relationship is not obtained (Fig. 17) between log (GL) and time. This

suggests that the reaction does not follow first order kinetics. A

similar conclusion was derived from the log (NAL) vs. time curve (Fig.

18). These data confirm previous observations with a

lysine-glucose-cellulose system. 7 ' 8 The halftime values estimated for

various time spains of the present experiment are shown in Table 1. The

t 1/2 estimated fron the linear portion of the log (NAL)-time plot gave a

value of 7.5 to 9.5 h which compared well with the estimate from the rate

curve of about 9 h.

As we include irnre and ir)re data points, the rate constant decreases

and, consequently, the t 1/2 value increases. The r(egression coefficient

is good only up ti) the 4th data point (at 24 h, when 92% of NAL had been

exhausted). The deviation from a linear semilog concentration-time

relationship ha.; been previously obsrv(ed by others 9 ' I 0 arid by us with

lysine-glucose m(ods. 7,8
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TABLE, I. First Order Rate Constants and Estimated 0
First Order ialf-tims of NAL loss at 60°C

TIME NO. OF RATE T 1/2 T 1/2

INTERVAL DATA REGRESSION CONST HR HR

IIR POINTS COEFFICIENT (HR-) CCMPUTED OBSERVED

0-13.1 3 -0.995 0.0928 7.5 9.0

0-24.1 4 -0.985 0.0730 9.5 9.0

0-48.1 5 -0.954 0.0480 14 9.0

0-100 6 -0.930 0.0295 23 9.0

0-144 7 -0.896 0.0208 33 9.0 "*
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Comparison between lysine-glucose-cellulose and acetyllysine-glucose-

cellulose models. Previous work from this laboratory was focused upon

lysine-glucose models. Because of its single free c-amino group, NAL has

been used in the present study and it better represents the complex

protein system in the food than does the lysine-glucose model where both

& amino groups are free. Under the same experimental conditions of

600C and aw of 0.23, lysine is exhausted more rapidly (t 1/2 of 1.5 h)

than is NAL (t 1/2 of 9 h). However, the differences in the lysine and

NAL rate curves (Fig. 19) seen are not as vast as in the case of

fluorescence or color (Figs. 20 and 21). In comparison with the NAL

model, the color and fluorescence exhibit a dramatic enhancement in the

lysine model. Lysine has two reactive amino groups unlike NAL, which has

only one similar to the case of peptide-bound lysine in proteins.

Consequently, the enhanced fluorescence and color is most likely due to

greater reactivity and greater degree of cross-linking of free lysire

compared to NAL.

In conclusion, a high degree of compression at 5500 psi failed to

produce accelerating or inhibitory effects upon the NAL-GL reaction. The

reaction at 600C and aw = 0.23 deviated significantly from first order

kinetics. Both fluorescence and color were dramatically decreased in the

NAL-GL compared with the lysine-GL system, suggesting that cross-linking

was greatly minimized in the NAL-GL system. Studies under way with

protein-glucose models may present a different picture compared with the

NALr-L model because of increased molecular size and the presence of

other amino acids, including end amino acids with free amino qrnupi.

Further, amino acids adjacent to lysine residues may not be biloqieally

available due to steric hindrance in enzyme catalysis.
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CONCLUS IONS

Compression of a model system, acetyllysine-glucose-cellulose, did not

decrease or increase the reaction between acetyllysine and glucose when

compared with an identical uncompressed model. Hence compressed foods are

not likely to undergo greater loss in protein quality than are

uncompressed foods. As noted, beneficial effect due to compression on

lipid autooxidation was recently demonstrated by Natick researchers (W. L.

Porter and E. D. Black). Thus, significant differences exist between

Maillard reaction and autooxidation in relation to the effect of

compression.

The acetyllysin-(lucose-cc, llulo!e system was very reproducible in two

experiments conducted three months apart as measured by losses in

acetyllysine and glucose with time.

Reducing capacity and furosine correlated exceedingly well with the

loss in NAI. Both fluorescence and color are not recommended as reliable

indicators for the loss in NA, because their intensities are extremely low

below 70% loss in NAL. Hlence large inaccuracies in data are predictable.

Acetyllysine i less reactive than lysine at 60 0 C and a = 0.23.W

Hence food proteins in the presence of reducing sugars are likely to be

less reactive than the lysine-glucose system.

The acetyllysine-glucose-ceilulose model gave rise to far less

fluorescence and color compared with a lysine-gl9ucose-cellulose model.

These data suggest limited cross-linking in the acetyllysine-glucose-

cellulose models compared with the lysine-glucose-cellulose models.

The loss in acetyllysine in 4 hours at 600 C and a : 1.23 was 39%.N Nw



REC(]M-NDAT I ( )NS

Fran this study the following recc ndations are nide.

1. The present findings should be validated using ccapressed and

uncompressed dairy products.

2. Experiments should be undertaken to determine the effect of water

activity and temperature upon the acetyllysine-glucose-cellulose model. A

long-term study at 400C would he particularly relevant to the

unrefrigerated storage stability of NS4 foods.

3. Similar studies should be conducted using protein-rehcing

carbohydrate systems.

4. The kinetics of the acetyllysine-glucose reaction should be determined

in a homogenous liquid medium to correct for the inherent defects of the

solid system. Whether the reaction is of a predictable order in solution

or whether the concept of reaction order does not apply to the

NAL-GL reaction should be established.

I
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